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Abstract

When introducing a resonant controller for a particular vibration mode in a structure this mode splits into two. A design

principle is developed for resonant control based on equal damping of these two modes. First the design principle is

developed for control of a system with a single degree of freedom, and then it is extended to multi-mode structures. A root

locus analysis of the controlled single-mode structure identifies the equal modal damping property as a condition on the

linear and cubic terms of the characteristic equation. Particular solutions for filtered displacement feedback and filtered

acceleration feedback are developed by combining the root locus analysis with optimal properties of the displacement

amplification frequency curve. The results are then extended to multi-mode structures by including a quasi-static

representation of the background modes in the equations for the damped mode. Applications to multi-degree-of-freedom

systems are illustrated by idealized models of a piezoelectric sensor–actuator device on a beam and an

accelerometer–actuator device on a cable. In both cases near-ideal response characteristics are obtained, when including

the quasi-static correction of the modal properties.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

An important aspect of the use of control of structures is to limit the dynamic response around the natural
resonances of the structure. A particular instance is the use of a resonant damped mass in the form of a tuned
mass absorber. The underlying theory has remained virtually unchanged since the work of Den Hartog in the
thirties [1]. The classic tuned mass absorber design procedure is based on analysis of the frequency response
curve for a harmonically forced oscillator. This procedure is rather different from the methods typically used
in the design of control systems, where some form of root locus analysis often forms a central ingredient, and
the control force is mostly represented via a proportional gain factor. This paper presents a combined design
method for resonant control, in which a root locus analysis is used to identify the optimal frequency of the
resonant controller by imposing a requirement of equal damping of the two modes generated by the
interference of the controller with the structural mode to be controlled. The feedback, coupling the resonator
to the structure, is designed subsequently by using properties of the frequency response curve of the controlled
modal response. Thus, the present method combines the root locus approach of control theory with the
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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frequency response characteristics typical of structural analysis. This section presents an overview of some
central contributions to the control theory approach to resonant control, as well as key references to the
structural vibration approach.

Damping of flexible structures by collocated active control dates back to the late seventies in connection
with damping of large space structures. The basic strategy with direct velocity feedback control was proposed
by Balas [2], representing an active implementation of a pure dissipative viscous damper model. In principle
this simple control strategy may perform satisfactorily for many engineering problems, but it was
demonstrated by Goh and Caughey [3] that the inclusion of the actuator dynamics may lead to stability
problems. It is therefore often desirable to filter the sensor input by second-order filter as introduced for
positive position feedback by Fanson and Caughey [4] and for acceleration feedback by Sim and Lee [5]. For
control strategies with second-order filters additional efficiency can be obtained by making use of the inherent
resonant characteristics, as observed for acceleration feedback by Juang and Phan [6]. The implementation of
a resonant control filter introduces an additional resonance represented by a new pole in the complex plane,
and common design techniques are mostly based on some form of pole placement, Goh and Yan [7], where
maximum damping is achieved at the bifurcation point of the structural and controller mode, see e.g. de Noyer
and Hanagud [8]. Alternative design procedures determine the filter parameters for instance by minimizing a
quadratic cost function in the structural response variables [9,10] or by maximizing the energy dissipation in
the actuator [11]. The range of applications of resonant controllers is fairly large, covering e.g. damping of
slender beams by piezoelectric sensor/actuator systems [12,13] and mitigation of earthquake induced
vibrations of shear frame structures [14].

A common characteristic of most of the work on resonant control from a control theory perspective is its
focus of the location of the poles in the complex plane. However, optimal response characteristics also require
optimal coupling between control and structure, and may also involve the load-properties that do not show up
directly in the root locus diagram.

The traditional approach to resonant control within the structural dynamics community has been more or
less opposite that within control theory, with the full analysis and calibration relying on observable
characteristics of the frequency response curve. The original design procedure for the tuned mass absorber by
Ormondroyd and Den Hartog [1,15] has remained virtually unchanged to this day. The analysis is separated
into two parts. First the optimum absorber frequency is determined by considering two points on the
frequency response curve, that are independent of the imposed damping. The damping is selected subsequently
to form a flat plateau on the frequency response curve, typically by the procedure proposed by Brock [16].
A recent analysis by Krenk [17] has demonstrated that equal amplification at the fix points of the frequency
response curve corresponds to equal damping of the two modes generated by the interference between the
structure and the additional mass. It was also demonstrated that improved damping could be obtained by
changing the design criterion to one imposing equal amplification at three selected points on the frequency
response curve.

An important aspect of a theoretical design procedure, initially developed for a single degree of freedom
structure, is the extension to structures with many degrees of freedom. In the case of tuned mass dampers a
simple iterative procedure may be sufficient for stiff structures that retain their vibration modes fairly intact
after installing the mass absorber(s), [18]. However, it is generally desirable, and necessary for very flexible
structures, to account for the effect of that part of the full structural response, that is not directly associated
with the mode to be controlled. This problem has been addressed in connection with a tuned mass absorber on
a multi-degree-of-freedom structure by Ozer and Royston [19,20], who included the additional degree
of freedom by use of the Sherman–Morrison formula and established an analogy with the single degree of
freedom system and the design procedure of Den Hartog. In its general form the procedure is rather
cumbersome, involving an iteration process.

This paper presents a design method for resonant control systems consisting of a resonant second-order
filter, connected to a structure by displacement or acceleration feedback, that is passed through a simple filter,
that enables the introduction of an appropriate moderate phase shift. The basic features are close to, and
include, those of the tuned mass absorber. The general features of the problem are as follows. The resonant
device is tuned to a frequency close to the natural frequency of the structure—either a single-degree of freedom
system or a selected modal frequency of a multi-degree of freedom system. The coupling leads to a split of the
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original structural mode into two modes with closely spaced frequencies. For small damping these frequencies
show up in the frequency response curve of the structural response as two closely spaced peaks. The design
problem consists in the selection of the parameters to make the device resonant and introduce an amount of
damping that makes the combined structural response exhibit a frequency interval around the natural
frequencies of the two coupled modes with large uniform damping. The dependence of these features on the
device parameters is highly nonlinear, and optimal calibration must be considered in a qualitative sense due to
the local character of the problem.

The design for control of an ideal single-degree-of-freedom structure proceeds in two steps. First a root
locus analysis identifies the oscillator frequency to produce equal modal damping. The general properties of
the root locus diagram corresponding to equal modal split of the damping ratio is presented in Section 3.
Section 4 presents the two basic cases of resonant control by displacement and acceleration feedback,
respectively. First the resonance frequency is determined from the root locus analysis, and then the actuator
feedback filter parameters are determined from a frequency analysis. Finally, the design procedure is extended
to multi-degree-of-freedom-structures in Section 5 by accounting for the non-damped background modes via a
quasi-static approximation. The result is a modified set of explicit formulae for the control parameters. It is
demonstrated by examples that this extends the quality of the single-degree-of freedom results to flexible
structures, retaining the nearly equal modal damping characteristic and enabling a considerable increase of
imposed damping relative to typical passive damping devices.

2. Generic frequency response format

The analysis and design of the system will be carried out in the frequency domain. For this purpose the time
dependence is represented via the complex exponential function expðiotÞ, where o is the angular frequency,
that will typically be complex valued, corresponding to attenuated response.

The controller force Fc is obtained from a control variable y, which in turn is obtained by filtering the
response x. This can be expressed in the general frequency format

GxxðoÞxþ GxyðoÞy ¼ F=m

GyxðoÞxþ GyyðoÞy ¼ 0 (1)

where F is the external force, and m is the structural mass. Gxx;Gxy; . . . are frequency dependent transfer
functions. For a structure without internal damping the natural angular frequency os is given in terms of the
stiffness k and mass m as

o2
s ¼ k=m (2)

Thus, the free response of the structure is governed by the frequency function

GxxðoÞ ¼ o2
s � o2 (3)

In this formulation the effect of structural damping has been omitted. Numerous investigations have
demonstrated that even for the special case of a ‘tuned mass absorber’ the introduction of structural damping
in the equations used to develop optimal design criteria prevents the development of tractable analytical
solutions. The usual procedure is therefore to base the development of the design formulas on an undamped
structural system, and then to introduce the damping device calibrated in this way into the damped structural
model. The effect of the structural damping is included by appeal to approximate formulas giving the
combined modal damping in terms of the structural modal damping and that obtained from the resonant
damping device. As demonstrated in [21] the modal structural damping ratio zs is included additively in the
resulting modes with the resonant device by 50–75%, depending on the relative magnitude of structural to
resonant damping. Thus, a conservative and rather representative contribution of the structural damping is
obtained by estimating a contribution of 50% of the original modal structural damping. For steel structures
where additional resonant damping is needed the original damping ratio is typically of the order
zs ’ 0:220:4%, while the desired damping is about 10 times larger. Thus, the contribution from the original
structural damping is negligible in these cases.
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The controller consists of an oscillator defined by the second-order filter function

GyyðoÞ ¼ o2
c � o2 þ 2izcoco (4)

where oc represents a characteristic angular frequency, and the non-dimensional parameter zc defines the
bandwidth of the filter. In the case of a tuned mass vibration absorber oc and zc are simply the undamped
natural frequency and the damping ratio of the suspended mass system if connected to a rigid support [1,17].
The function GyxðoÞ defines the output from the structure to be used by the controller, and GxyðoÞ defines
the frequency dependence of the feedback force on the structure. The quality of the device depends on the
characteristics of the four frequency functions Gxx; . . . ;Gxy. Before discussing the specific form of the feedback
functions Gxy and Gyx, defining the coupling of the system, some general properties of optimal damping by
resonant control by a system of the form defined by relations (1) will be studied in the next section.

The quality of the control is associated with its ability to limit the response of the structure around the
resonance frequency os. The response x follows from elimination of the control variable y between Eq. (1),
whereby

x ¼
Gyy

GxxGyy � GxyGyx

F

m
(5)

Clearly, the magnitude of the control force F c needed to reduce the resonant response is also of importance. It
follows from (1) in the form

F c ¼ �mGxyy ¼
GxyGyx

GxxGyy � GxyGyx

F (6)

It is seen that interchange of Gxy with Gyx may lead to a redefinition of the control variable y, but leaves the
structural response x unchanged.
3. Root locus diagram

For systems in which the frequency functions Gxx; . . . ;Gyy are quadratic polynomials, corresponding to
second-order filters, the resulting characteristic polynomial appearing as denominator in expressions (5) and
(6) for the structural response and the control force, respectively, is a quartic polynomial. It follows from the
representation of the response in terms of the complex exponential eiot that the coefficients of the even order
terms are real, while the coefficients of the odd order terms contain the imaginary unit i. In Ref. [17] it was
demonstrated for the special case corresponding to a tuned mass absorber that equal modal damping would
result from a suitable calibration of the natural frequency of the tuned mass. Here the argument is turned
around, and the generic format of the characteristic equation is constructed from the requirement that the
coupled system should have modes with equal damping ratio. In this section the root locus analysis of the
denominator is carried out with generic parameters, and specific filter variables are introduced in connection
with the response analysis in Section 4.

Let the four roots of the characteristic equation be denoted o1; . . . ;o4, and assume that there is a parameter
combination for which o1 and o2 lie in the first quadrant. The corresponding modes will then have equal
damping ratio, if o1 and o2 lie on the same line containing the origin of the complex plane. This implies that
they are inverse points in the complex plane with respect to a circle with radius equal to some real-valued
frequency o0, i.e.

o2

o0
¼

o0

o�1
(7)

where o�1 denotes the conjugate of o1. This relation is illustrated in Fig. 1. The reciprocal relation between
o=o0 and o0=o suggests the following format of the characteristic equation:

o
o0
�

o0

o

� �2

� 4ibc
o
o0
�

o0

o

� �
� 4c2 ¼ 0 (8)
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Fig. 1. Complex roots o1, o2 and o3, o4 as inverse points of circle joj ¼ o0.

Fig. 2. Root locus diagram for c ¼ 0:4.
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This equation contains two coefficients, and it turns out to be convenient to express these in terms of the real-
valued parameters c and b as shown. By taking the complex conjugate to this equation it follows that if o1 is a
root, so is o2 as defined by Eq. (7). Furthermore, the two remaining roots are given by o3;4 ¼ �o�1;2 as
illustrated in Fig. 1. This property is required by the origin of the equation from real-valued filters in the time
domain. Thus, it has been demonstrated that the format (8) does indeed define the characteristic equation of a
resonant system with equal modal damping. The corresponding polynomial form follows from multiplication
with ðo0oÞ

2:

o4 � ð2þ 4c2Þo2
0o

2 þ o4
0 � 4ibco0oðo2 � o2

0Þ ¼ 0 (9)

It is seen that the reference frequency o0 is defined by the constant term of the normalized characteristic
polynomial. The special property of equally damped modes as expressed by the inverse root relation (7) is
equivalent to imposing a balance constraint between the cubic and linear terms of the equation. This
constraint implies that the cubic and linear terms cancel for o ¼ �o0.

A full analysis of the root locus diagram is presented in Appendix A. The general form is illustrated in Fig. 2
for a fixed value of the parameter c ¼ 0:4. The markers correspond to b ¼ 0; 0:05; 0:10; 0:15; . . .. For b ¼ 0 the
four roots o1, o2 and o3, o4 are located symmetrically on the real axis with distance o2 � o1 ¼ o3 � o4 ¼

2co0. When the parameter b is increased from zero, the roots o1, o2 and o3, o4 generate branches that meet at
two bifurcation points for b ¼ 1, corresponding to

ob=o0 ¼ ic�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

(10)

When b is increased beyond 1 the roots follow the circle joj ¼ o0, centered at the origin with radius o0. Two
of these branches converge towards the points �o0 on the real axis, while the two other branches meet at a
new bifurcation point at io0, where they branch along the imaginary axis. The relevant parametrization is
given in Appendix A.

The root locus branches of main interest in the present context are those traced by the parameter interval
0pbp1. On these parts all four roots correspond to the same damping ratio, and the magnitude of this
damping ratio is a main objective of the design of the system. It is therefore of considerable interest to obtain
an expression for this damping ratio in terms of the system parameters c and b. To this purpose the
characteristic equation (9) is written in terms of the roots o1; . . . ;o4 in the form

ðo� o1Þðo� o2Þðo� o3Þðo� o4Þ ¼ 0 (11)
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Comparison of the coefficient of the cubic term of this equation with the corresponding coefficient of Eq. (9)
yields the relation

4ibc ¼ ðo1 þ o2 þ o3 þ o4Þ=o0 ¼ 2i Im
o1

o0
�

o0

o1

� �
(12)

where the reflection properties shown in Fig. 1 have been used. The damping ratio z of the combined system is
defined by the normalized imaginary part of the characteristic frequencies,

o1 ¼ jo1jð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
þ izÞ (13)

Substitution of this representation into Eq. (12) leads to the following expression for the damping ratio:

z ¼
bc

1

2

jo1j

o0
þ

o0

jo1j

� � ’ bc (14)

The last expression is based on the approximation that the denominator is unity. In fact it follows from
Eq. (A.4) that the value of the denominator decreases from

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2
p

for b ¼ 0 to unity at the bifurcation point
for b ¼ 1. Thus, the error of this approximation is small for small values of c, typical of applications.

The parameters c and b can now be given direct physical interpretations. The bifurcation points ob on the
smaller contours correspond to b ¼ 1, and it then follows from Eq. (14) that

c ’ zb (15)

The parameter b then follows by elimination of c from Eq. (14),

b ’ z=zb (16)

i.e. as the actual damping ratio relative to the bifurcation value zb.
The root locus diagram in Fig. 2 shows the root locations as function of the parameter b for a fixed value of

c. In an actual design context it is more pertinent to consider the roots as located at optimal positions on the
smaller contours by a specific value of the parameter b. Increasing damping is then obtained by increasing the
parameter c. As demonstrated later optimal response characteristics are obtained by selecting b ’

ffiffiffi
2
p

=2. This
value represents a optimal compromise between the introduction of sufficient damping and a sufficient
separation of the natural frequencies o1 and o2 to avoid direct superposition of the modes. The asymptotic
behavior of the roots o1 and o2 then follows from combination of relations (A.2) and (A.3), whereby

o1;2=o0 ’ 1þ 1
2

ffiffiffi
2
p
ð�1þ iÞc (17)

This relation indicates that the normalized roots move from o0 into the upper half-plane under an initial angle
of 45� with the real axis. This is illustrated in Fig. 3, showing the root locus diagram for b ¼

ffiffiffi
2
p

=2 and
c ¼ 0; 0:1; 0:2; . . . .
Fig. 3. Root locus diagram for b ¼
ffiffiffi
2
p

=2.
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4. Frequency response analysis

The root locus analysis of the previous section has identified a characteristic angular frequency o0 and
determined a condition for equal modal damping in terms of o0. The equal modal damping condition
is determined by a combination of all four frequency functions Gxx; . . . ;Gyy. The remaining conditions are
determined from the frequency response (5) of the structural response x and the frequency response (6) of the
control force F c. It is desirable that the control force vanishes at zero frequency as well as at infinite frequency.
The product GxyGyx, appearing as numerator of the control force, must therefore be a polynomial containing
only linear, quadratic and cubic terms. In this section the two special cases corresponding to displacement
feedback and acceleration feedback are treated in detail. Each of these cases are defined by two terms,
providing the real part and an appropriate phase shift via the imaginary part.

4.1. Filtered displacement feedback

In this case the feedback is based on the displacement, leading to a constant frequency function

GyxðoÞ ¼ o2
c (18)

The frequency oc from the resonant controller has been used for dimensional reasons. The actuator frequency
function Gxy combines a quadratic and a linear term in o in order to enable tuning of the phase,

GxyðoÞ ¼ ao2 þ g2izcoso (19)

Here the structure reference frequency os has been used, and two non-dimensional gain factors a and g have
been introduced. The design problem consists of the determination of optimal combinations of the frequency
ratio oc=os, the bandwidth parameter zc, and one of the two gain parameters a and g. The remaining gain
parameter serves as the gain of the optimized system. The procedure consists in first introducing equal modal
damping properties, and then optimizing the frequency response curve.

As demonstrated in Section 3 equal modal damping is achieved by imposing an appropriate balance
between the linear and cubic term in the denominator of the response expressions (5) and (6),

GxxGyy � GxyGyx ¼ o4 � ½o2
s þ ð1þ aÞo2

c �o
2 þ o2

so
2
c � 2izcoco½o2 � o2

s þ gosoc� (20)

The reference frequency o0 of this equation follows from the constant term, whereby

o2
0 ¼ osoc (21)

Thus, the reference frequency o0 is the geometric mean value of the original structure frequency os and the
controller frequency oc. Equal modal damping is obtained by setting the constant term in the square brackets
of the last term equal to o2

0:

o2
s � gosoc ¼ o2

0 (22)

Upon substitution of o0 from Eq. (21) it follows that

oc ¼
os

1þ g
(23)

Finally, an explicit expression for the reference frequency o0 follows by substitution of this expression for oc

into Eq. (21),

o2
0 ¼

o2
s

1þ g
(24)

Thus, the equal modal damping condition has determined the controller resonance frequency oc and defined
the reference frequency o0 in terms of the gain parameter g.

The optimal values of the damping parameter zc and the gain parameter a are determined from
the frequency response curve. The principle is illustrated in Fig. 4. Within the present filter format the
displacement amplification curve is independent of the damping parameter zc at two points—the so-called fix
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Fig. 4. Equal displacement amplification at three frequencies.
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points—occurring at frequencies oA and oB. The requirement of equal amplification at oA and oB provides an
equation for the parameter a. It turns out that the reference frequency o0 lies within the interval between the
two fix points, i.e. oAoo0ooB. Flat response characteristics are therefore imposed by setting the
amplification at o0 equal to the amplification at the fix points oA and oB. The result of these two conditions is
illustrated in Fig. 4. These two conditions have been used in connection with the tuned mass absorber, where
the equal amplification at fix points was introduced in Ref. [1] and the equal amplification at the intermediate
frequency in Ref. [17]. The analysis is straightforward, but somewhat lengthy, and is therefore given in
Appendix B.

As shown in the Appendix equal displacement amplification at the fix points oA and oB determines the gain
parameter a as

a ¼ gð1� gÞ (25)

The equal amplification condition at the reference frequency o0 then gives the optimal damping ratio by

z2c ¼
g
4

2þ g
1þ g

(26)

Thus, the control system parameters oc, zc and a have all been expressed in terms of the gain parameter g.
The present parameter calibration has the interesting property that each of the equally damped modes have

approximately half of the damping ratio zc introduced in the controller. This follows from the generic result
(12), when applied to the present calibrated filter combination. The product bc in the generic equation is
expressed in terms of the current specific parameters by comparison of the cubic terms in the generic frequency
equation (9) and the present frequency equation (20). As a result the modal damping ratio is expressed as

z ’
1

2
zc

oc

o0
’

1

2
zc (27)

This approximate result is very accurate for realistic damping ratio values. It serves as a convenient starting
point in designing an appropriate resonant filter, when a desired modal damping ratio z is known, as
illustrated in Section 5. The equal split of the imposed damping to the modes was observed in the case of a
tuned mass damper in Ref. [17] and used in designing a tuned damping system for a pedestrian bridge in Ref.
[18].

For the case of displacement feedback the final form of the displacement response in terms of the optimal
parameters follows from Eq. (5) as

xk

F
¼

ð1þ gÞo2
0½o

2
0 � ð1þ gÞo2 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2þ gÞ

p
o0o�

ð1þ gÞo4 � ð2þ 3gÞo2
0o

2 þ ð1þ gÞo4
0 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2þ gÞ

p
o0oðo2

0 � o2Þ
(28)
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Fig. 5. Filtered displacement feedback, g ¼ 0:01 (——), 0.05 (– – –), 0.1 ð2 � 2Þ and 0.2 ð2	 2Þ. (a) Displacement amplitude. (b)

Control force amplitude.
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The relative magnitude of the control force follows from Eq. (6). For optimal parameters the result is

Fc

F
¼

go2
0½ð1� gÞo2 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2þ gÞ

p
o0o�

ð1þ gÞo4 � ð2þ 3gÞo2
0o

2 þ ð1þ gÞo4
0 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2þ gÞ

p
o0oðo2

0 � o2Þ
(29)

The displacement and control force amplitudes are shown in Fig. 5. Both sets of curves display a plateau-like
behavior around the structural frequency os. The displacement amplification at the fix points and the
reference frequency o0 is given by Eq. (B.11) as

xk

F

����
����
o0

¼ ð1þ gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ gÞ

g

s
’

ffiffiffiffiffiffiffi
2=g

p
(30)

where the last expression is the asymptotic value for small gain g. The control force around the resonance
frequency is approximately equal to the external force and given by

Fc

F

����
����
o0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g2

p
’ 1þ g2 � � � (31)

Thus, in the case of displacement feedback the control force at the reference frequency o0 increases with the
gain parameter g. However, as seen from the graphs in Fig. 5 this increase is negligible for gt0:1,
corresponding to the amplification factor

ffiffiffiffiffiffiffiffiffiffiffi
2=0:1

p
’ 4:5, which in practice is a very large damping of the

resonance. Thus, for practical levels of damping the skewness of the control force curve and the change of
peak value will be negligible.
4.2. Filtered acceleration feedback

This section describes the equal modal damping design of a system with acceleration feedback, e.g. from an
accelerometer. This corresponds to the controller being driven via the frequency function

GyxðoÞ ¼ o2 (32)

In order for the control force to attenuate for increasing large frequencies the product GxyGyx must be limited
to a cubic polynomial. That leads to the following two-parameter format:

GxyðoÞ ¼ ao2
c þ g2izcoco (33)

with gain factors a and g. The design problem consists in the determination of optimal combinations of the
frequency ratio oc=os, the bandwidth parameter zc, and the two gain parameters a and g. The procedure is
similar to that of the displacement feedback problem treated above.
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In the present case of acceleration feedback the denominator of the response and control force takes the
form

GxxGyy � GxyGyx ¼ o4 � ½o2
s þ ð1þ aÞo2

c �o
2 þ o2

so
2
c � 2izcoco½ð1þ gÞo2 � o2

s � (34)

The reference frequency o0 of this equation follows from the constant term as

o2
0 ¼ osoc (35)

It is observed that this is the same as in the case of displacement feedback, because the product GxyGyx does
not contain a constant term. As discussed previously this is a necessary condition for the control force to
vanish at zero frequency. The equal modal damping property follows from normalization of the two terms in
the square brackets of the last term:

o2
0 ¼

o2
s

1þ g
(36)

Combination of these two relations gives

oc ¼
o0ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p ¼

os

1þ g
(37)

The expressions for the control frequency oc and the reference frequency o0 are identical to those obtained for
the case of displacement feedback.

As shown in Appendix B equal amplification at the fix point frequencies oA and oB leads to the gain
parameter

a ¼ g (38)

The equal amplification condition at the reference frequency o0 then gives

z2c ¼
1

2

g
1þ g

(39)

It is seen that the expressions for a and zc obtained here for acceleration feedback are different from those
corresponding to displacement feedback. However, they exhibit the same asymptotic dependence on g for
small values of this parameter. The equal split of the imposed damping ratio zc to the two modes as expressed
in Eq. (27) is also valid in the case of acceleration feedback.

For the case of acceleration feedback the final form of the displacement response in terms of the optimal
parameters follows from Eq. (5) as

xk

F
¼

o2
0½o

2
0 � ð1þ gÞo2 þ i

ffiffiffiffiffi
2g
p

o0o�
o4 � ð2þ gÞo2

0o
2 þ o4

0 þ i
ffiffiffiffiffi
2g
p

o0oðo2
0 � o2Þ

(40)
Fig. 6. Filtered acceleration feedback, g ¼ 0:01 (——), 0.05 (– – –), 0.1 ð2 � 2Þ and 0.2 ð2	 2Þ. (a) Displacement amplitude. (b) Control

force amplitude.
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The relative magnitude of the control force follows from Eq. (6). For optimal parameters the result is

F c

F
¼

g
1þ g

o2
0o

2 þ i
ffiffiffiffiffi
2g
p

o0o3

o4 � ð2þ gÞo2
0o

2 þ o4
0 þ i

ffiffiffiffiffi
2g
p

o0oðo2
0 � o2Þ

(41)

The frequency response for the structure displacement x and the control force Fc are illustrated in Fig. 6. It is
seen that the displacement amplitude has a fairly level plateau with amplitude given by Eq. (B.20) as

xk

F

����
����
o0

¼

ffiffiffiffiffiffiffiffiffiffiffi
2þ g
g

s
’

ffiffiffiffiffiffiffi
2=g

p
(42)

The control force has a plateau-like behavior with a slight upward slope towards increasing frequencies. In
addition, there is a slight dependence on the gain parameter of the form

Fc

F

����
����
o0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g
p

1þ g
’ 1�

1

2
g2 � � � (43)

It is seen that the frequency curves in this case have a small upward inclination with increasing frequency, but
again the effect is small for gain values likely to be used in practice.

5. Multi-degree-of-freedom systems

Results for single degree for freedom systems can often be calibrated so that they are representative for
modal behavior in multi-degree-of-freedom systems. The typical problem is that the individual mode only
accounts for part of the motion registered by a control sensor, and similarly the actuator force excites other
modes as well. This is the so-called ‘spillover’ problem. The basic form, in which a truncated modal analysis is
supplemented by a quasi-static representation of the remaining modes goes back to the seventies [22], while the
introduction of a quasi-static term in truncated modal analysis has been discussed e.g. in Ref. [13]. In this
section the idea of a quasi-static correction term is used to account for the fact that a displacement or
acceleration sensor on a multi-degree-of-freedom structure also registers the motion from non-resonant
background modes. This effect should be included when establishing the analogy with resonant control of a
single-degree-of-freedom system, analyzed in the previous sections. The present discussion starts with
establishing an equivalent two-component set of equations for the resonant control including an approximate
representation of the effect of background modes, and then proceeds to illustrate the detailed procedure for
displacement feedback and acceleration feedback, respectively.

5.1. Correction for background modes in MDOF systems

Consider a multi-degree-of-freedom system with stiffness matrix K and mass matrix M. The displacements
are denoted q and the corresponding external loads F. In addition to the external load an actuator with control
signal Z is connected to the structure as described by the connectivity vector w. The connectivity vector w

contains the number 1 at the appropriate degree-of-freedom if it is connected to the surroundings, and a set of
numbers 1 and �1 for degrees-of-freedom that are connected by an actuator. The corresponding frequency
equation is

ðK� o2MÞq ¼ F� wGqZðoÞZ (44)

The actuator is assumed to be controlled by a collocated signal, i.e. a signal generated by a sensor attached to
the same degrees-of-freedom as the actuator. Thus, the actuator signal Z is controlled by the frequency
equation

GZZðoÞZ ¼ �GZqðoÞwTq (45)

A modal representation of the response is introduced in the form

q ¼
X

j
ujxj ; uTj Muk ¼ djk (46)
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where uj denotes the jth mode shape vector, and xj the corresponding modal amplitude. djk denotes
Kronecker’s delta, whereby the modes are normalized to unity with respect to the mass matrix.

Here the case of a single collocated controller is developed, and to be specific the controller is assumed to
aim at controlling the first mode. The corresponding modal equation is obtained from Eq. (44) by pre-
multiplication with the modal vector uT1 . This gives an equation of the form

GqqðoÞx1 þ n1GqZðoÞZ ¼ 0 (47)

with the modal frequency response function in terms of the undamped modal frequency o1,

GqqðoÞ ¼ o2
1 � o2 (48)

The coefficient n1 describes the (relative) motion of the actuator for the normalized mode u1,

n1 ¼ uT1w (49)

It is therefore to be expected that this factor appears on the actuator term in Eq. (47).
While the actuator force is included directly in the modal equation (44) by projection on the mode shape

vector u1, the term wTq from the displacement vector in the control equation (45) contains contributions from
all modes. For flexible structures it is important to include the effect of these ‘background modes’ in the
calibration of the control parameters. The purpose is to identify the optimal parameters, and the displacement
vector q is therefore eliminated by use of the homogeneous form of Eq. (44),

wTq ¼ �wTðK� o2MÞ�1wGqZðoÞZ (50)

The inverse of the dynamic stiffness matrix can be expanded in terms of the mode shape vectors as

ðK� o2MÞ�1 ¼
X

j

uju
T
j

o2
j � o2

(51)

The corresponding static result is obtained for o ¼ 0,

K�1 ¼
X

j

uju
T
j

o2
j

(52)

A quasi-static approximation is obtained by including only the full form from the resonant mode, while the
remaining background modes are represented by the static expansion (52). When the static expansion is used
to eliminate the series representation of the background modes, the quasi-static approximation takes the form

ðK� o2MÞ�1 ’
u1u

T
1

o2
1 � o2

þ K�1 �
u1u

T
1

o2
1

� �
(53)

The effect of the correction term in Eq. (50) is expressed by the parameter

k1 ¼ wT K�1 �
u1u

T
1

o2
1

� �
w ¼ wTK�1w� ðn1=o1Þ

2 (54)

This parameter has a direct physical interpretation, The first term is the displacement between the degrees of
freedom of the sensor for a unit force exerted by the actuator, and the second term subtracts the part
associated with the first mode. Thus, the parameter k1 is an expression of the excess flexibility provided by the
background modes. In the computations relating to specific filters it is convenient to use the normalized form

k ¼ k1ðo1=n1Þ
2
¼ ðn1=o1Þ

2wTK�1w� 1 (55)

This parameter is an expression of the relative excess flexibility of the background modes corresponding to an
original unit flexibility. It plays a central role in describing the effect of the background modes as
demonstrated in the following sections.
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The full relation (50) can now be expressed as

wTq ’ �
n21

GqqðoÞ
þ k1

� �
GqZðoÞZ (56)

The final form is obtained by expressing the first term as the modal amplitude by using the homogeneous
modal equation (47),

wTq ’ n1x1 � k1GqZðoÞZ (57)

When this result is introduced into the control equation (45), the combined set of the non-homogeneous modal
equation and the approximate control equation takes the form

GqqðoÞx1 þ n1GqZðoÞZ ¼ F 1

n1GZqðoÞx1 þ ½GZZðoÞ � k1GZqðoÞGqZðoÞ�Z ¼ 0 (58)

with modal load F1 ¼ uT1F.
The present equation (58) are in terms of modal components, and therefore are not dimensionally consistent

with Eq. (1) for the single-degree-of-freedom system. In the present case it is convenient to use the normalized
modal displacement by

x ¼ n1x1 ¼ wTðu1x1Þ (59)

This variable has the dimension of displacement, and furthermore takes unit value for unit displacement of the
sensor. The corresponding normalized modal force is defined by

F ¼ n1F 1 ¼ ðn1u1Þ
TF (60)

This load parameter has the dimension [force/mass] ¼ [acceleration]. The modal equation (58) can now be
written in the normalized form

GqqðoÞxþ n21GqZðoÞZ ¼ n1F1

GZqðoÞxþ ½GZZðoÞ � k1GZqðoÞGqZðoÞ�Z ¼ 0 (61)

The control variable Z has the dimension of displacement, when the frequency functions GqqðoÞ, GZZðoÞ,
GZqðoÞ and n21GqZðoÞ have the same dimension, here taken as frequency squared.

The system of equations for modal damping is analogous to the single-degree-of-freedom system (1)
provided that the product GZqðoÞGqZðoÞ is a quadratic function of frequency, as in the case of displacement
feedback. The results for optimal parameters of a single-degree-of-freedom system obtained in Section 4.1 can
then be translated into optimal control parameters for the multi-degree-of-freedom system. In the case of
acceleration feedback the correspondence is not exact, but a simple modification of the terms in the coupling
filters permits the determination of near-optimal parameters. Both cases are treated in the following.

5.2. MDOF system with filtered displacement feedback

The MDOF displacement feedback problem is described by the modal and resonant frequency functions

GqqðoÞ ¼ o2
1 � o2; GZZðoÞ ¼ o2

Z � o2 þ 2izZoZo (62)

and the feedback functions

GZqðoÞ ¼ o2
1; n21GqZðoÞ ¼ aZo2 þ gZ2izZoZo (63)

It is to be noted that the function GZqðoÞ is here expressed in terms of the original undamped frequency o1,
while in the SDOF formulation the controller frequency oc was used. The reason for the present choice is that
it leads to the non-dimensional parameter k defined in terms of the known structural frequency o1, while in
the SDOF format the controller frequency oc was chosen in order to create greater uniformity between the
two types of control.
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The task is to express the parameters oZ, zZ, aZ and gZ in terms of the similar parameters for the single-
degree-of-freedom system, and then to use the optimal expressions derived in Section 4.1. This is most easily
accomplished by considering the response relation derived from (60),

x ¼
GZZðoÞ � k1GZqðoÞGqZðoÞ

Gqq½GZZðoÞ � k1GZqðoÞGqZðoÞ� � n21GxyGyx

n1F1 (64)

This formula is similar to Eq. (5) for the SDOF system. In order to have a full analogy the terms in the square
brackets should form a function proportional to the frequency function GyyðoÞ. Insertion of the relevant
frequency functions from Eqs. (62) and (63) gives

GZZðoÞ � k1GZqðoÞGqZðoÞ ¼ ð1þ aZkÞ½o2
c � o2 þ 2izcoco� (65)

where the parameters in the square brackets are given by

o2
c ¼

1

1þ aZk
o2

Z (66)

and

zcoc ¼
1� gZk
1þ aZk

zZoZ (67)

The numerical factor ð1þ aZkÞ is extracted from the last term in the denominator of Eq. (64), and the
remainder is recast into the form of the corresponding single-degree-of-freedom expression

n21GZqðoÞGqZðoÞ ¼ ð1þ aZkÞo2
c ½ao

2 þ g2izco1o� (68)

When account is taken of the frequency variables appearing in the single-degree-of-freedom format the
parameters in the square brackets are found to be

a ¼
aZ

1þ aZk
o2

1

o2
c

; g ¼
gZ

1þ aZk
o2

1

o2
c

zZoZ

zco1
(69)

For optimal parameters the frequency ratio o1=oc ¼ ð1þ gÞ follows from Eq. (23). When the last factor in Eq.
(69) is expressed by use of Eq. (67), the relations take the reduced form

a ¼ ð1þ gÞ2
aZ

1þ aZk
; g ¼ ð1þ gÞ

gZ
1� gZk

(70)

The occurrence of the g-factor in the power two in the first relation and in the power one in the second relation
is due to the difference in frequency normalization between the SDOF and MDOF case. The parameter a is
given in terms of g by Eq. (25), and the two relations are easily inverted to give the MDOF parameters in terms
of the gain parameter g of the equivalent SDOF system,

aZ ¼
gð1� gÞ

ð1þ gÞ2 � kgð1� gÞ
, (71a)

gZ ¼
g

1þ gþ kg
(71b)

It follows from relation (71b) that the MDOF gain parameter gZ is bounded by the upper limit ð1þ kÞ�1

corresponding to infinite value of the equivalent SDOF gain g. Thus, a high value of the background mode
parameter k imposes a stricter limit of the gain gZ that can be applied to the structure.

5.3. Example: cantilever beam with piezoelectric sensor and actuator

In this example the resonant control with displacement feedback is implemented for a cantilever beam as
shown in Fig. 7. Two rectangular piezoelectric strips are placed symmetrically on the top and bottom side of
the beam, where they act as a collocated sensor/actuator pair. This type of setup is often used to illustrate the
performance of active control strategies on flexible structures, see e.g. Ref. [12]. The actuator strip produces a
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Table 1

Mode 1 damping ratios for cantilever beam ðk ¼ 4:042Þ.

zdes1
zc g oc=o1 gZ aZ oZ=o1 zZ z�1 z�1 jk¼0

0.03 0.06 0.0072 0.9928 0.0070 0.0073 1.0073 0.0626 0.0299 0.0346

0.0299 0.0226

0.06 0.12 0.0292 0.9716 0.0255 0.0300 1.0289 0.1417 0.0591 0.0648

0.0589 0.0341

0.09 0.18 0.0669 0.9373 0.0500 0.0705 1.0624 0.2557 0.0868 0.0749

0.0866 0.0404

0.12 0.24 0.1218 0.8914 0.0755 0.1295 1.1003 0.4263 0.1124 0.0578

0.1121 0.0446

Fig. 7. Cantilever beam with piezoelectric strips as sensor and actuator.
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pair of control moments proportional to the applied voltage: Mc ¼ KpVapp, where Kp depends on the size and
material properties of the piezoelectric strip [13]. On the other hand, the voltage measured by the sensor is
proportional to the difference in bending rotation at the two ends of the strip: Dy ¼ ðCf =KpÞV sen, where Cf is
the capacitance of the charge amplifier.

The cantilever beam is made of steel with elastic modulus E ¼ 2:1	 1011 N=m2 and mass density
r ¼ 7850 kg=m3. The length is l ¼ 0:75m, width is b ¼ 0:05m and thickness is t ¼ 0:005m. The beam is
discretized into 15 identical beam elements with two nodal degrees of freedom (transverse displacement ui and
rotation yi). The piezoelectric strips are located between nodes 1 and 2, as indicated in Fig. 7. This means that
the length of each strip is 0.05m and that they are attached 0.05m from the support. Hereby, the connectivity
vector is

wT ¼ ½0;�1; 0; 1; 0 . . . 0�

and the correction factor in Eq. (55) is k ¼ 4:042, which indicates significant influence from higher modes. The
collocated format of the control implies that Dy ¼ wTq and the transfer relation between applied and sensor
voltage then appears as

V app ¼ �
Cf

K2
p

GqZGZq

GZZ
V sen

In practice the design of the control system relies on a desired damping ratio for the critical mode, which in
this case is mode 1. Since the present design procedure leads to equal split of the filter damping zc into the two
vibration modes, it should be chosen as twice the desired modal damping: zc ¼ 2zdes1 . By inversion of Eq. (26)
an expression for the control gain is found as

g ¼ �1þ 2z2c þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2z2cÞ

2
q

’ 2z2cð1þ z2cÞ (72)

where the last relation follows from the two term expansion of the square root. Table 1 gives the design results
for a desired damping ratio zdes1 ¼ 0:03, 0.06, 0.09 and 0.12, respectively. The design procedure follows the
order of the columns in the table. Initially the desired damping ratio zdes1 for mode 1 is chosen and the filter
damping is zc ¼ 2zdes1 . Then the gain parameter g of the SDOF system is found by Eq. (72) and the filter



ARTICLE IN PRESS
S. Krenk, J. Høgsberg / Journal of Sound and Vibration 323 (2009) 530–554 545
frequency oc for the SDOF system is determined by Eq. (23). Finally, the control gains aZ and gZ are computed
by Eq. (71b), and the filter parameters oZ and zZ of the actual filter in the MDOF case are determined by
Eqs. (66) and (67), respectively. The second last column of the table gives the two damping ratios for the two
branches associated with mode 1, found by an eigenvalue analysis of the full system. It is seen from the table
that there is almost perfect equal split of the desired damping into the two modes, i.e. z�1 ’ zþ1 ’ zdes1 . The last
column contains the similar damping ratios obtained by use of a control system designed using k ¼ 0, i.e.
neglecting the influence of the background modes. In this case equal split of modal damping is not attained,
and the damping ratio is considerably smaller than that obtained when accounting for the background modes.

Fig. 8 shows the two root loci associated with the split mode 1, with g as control gain. The markers represent
the complex natural frequencies for the four levels of control indicated in Table 1. The solid curves and dots
represent frequency loci for a control design with k included, whereas the dashed curves and crosses represent
the case with k ¼ 0. It is seen that the frequency loci for both cases emanate from the undamped mode 1
frequency under 45�, as discussed earlier for the SDOF system in connection with Fig. 3. The solid curve
follows the 45� trajectory fairly well and provide almost perfect equal split of modal damping for all four dots,
as illustrated for the last set of roots with g ¼ 0:1218 by the dotted line. In contrast, the dashed curves for
k ¼ 0 loose the equal damping property quite early and provide substantially less damping. Furthermore,
for k ¼ 0 the system becomes unstable around g ¼ 0:21, where the left (dashed) branch in Fig. 8 moves into
the negative imaginary half-plane.

The frequency response of the beam is computed by applying a transverse harmonic force of unit magnitude
at the beam tip:

FT ¼ ½0; 0; . . . ; 1; 0� expðiotÞ

The response is obtained by solving for q in Eqs. (44) and (45). Fig. 9 shows the dynamic amplification of the
transverse tip displacement and magnitude of the moment applied by the piezoelectric actuator. The four
Fig. 8. Root locus diagram. Calibration with (——) and without (– – –) background correction. Markers represent the four cases in

Table 1.

Fig. 9. (a) Dynamic amplification at beam tip. (b) Magnitude of control moment. g ¼ 0:0072 (——), 0.0292 (– – –), 0.0669 ð2 � 2Þ and

0.1218 ð2	 2Þ.
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Fig. 10. Free vibration of cantilever beam for g ¼ 0 and g ¼ 0:0072, 0.0292, 0.0669, 0.1218 from Table 1.
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curves represent the four cases in Table 1. Good qualitative agreement is observed when compared to the
frequency response curves in Fig. 5 for a single-degree-of-freedom structure.

Finally, the free vibration decay of the cantilever beam is illustrated by time simulations in Fig. 10. The
initial displacement is the static deflection when applying the unit tip load. The figure shows the undamped
response of the beam and the damped response for the four levels of control in Table 1. It is seen that larger
value of g leads to faster attenuation of the response, while introducing an increasing amount of high
frequency components due to control spill-over to the higher modes.

5.4. MDOF system with filtered acceleration feedback

In the case of acceleration feedback the structural response and the controller frequency functions are again
given by Eq. (62). However, the feedback functions are now given in a format similar to Eqs. (32) and (33) as

GZqðoÞ ¼ o2; n21GqZðoÞ ¼ aZo2
1 þ gZ2izZoZo (73)

Also in this case the identification of the correspondence between the actual MDOF system parameters and
oZ, zZ, aZ, gZ and the equivalent SDOF parameters will be established by use of the displacement frequency
response relation (64). First the terms in the square brackets are written in the normalized form

GZZðoÞ � k1GZqðoÞGqZðoÞ ¼ o2
Z � ð1þ aZkÞo2 þ 2izZoZo 1� gZk

o2

o2
1

� �
(74)

The term containing the factor gZ is a correction term, which is primarily of importance around resonance.
When introducing the approximation o2=o2

1
1 in this term, the expression in Eq. (74) takes the same
form as Eq. (65) for the case of displacement feedback. Thus, the equivalence between coefficients leads
to the frequency relation (66) and damping relation (67) already established for the case of displacement
feedback.

The second set of relations is established from the last term of the response function denominator, i.e. by the
equation

n21GZqðoÞGqZðoÞ ¼ ð1þ aZkÞo2½ao2
c þ g2izcoco� (75)

The gain factors a and g of this expression are identified by comparison with the product formed from the
MDOF frequency functions in (73):

a ¼
aZ

1þ aZk
o2

1

o2
c

; g ¼
gZ

1þ aZk
zZoZ

zcoc

(76)

It is seen that while the relation for the a-gain factor is identical to that of displacement control, the g-gain
factor now depends directly on the ratio of the combined damping frequency product. When the last factor in
these two relations are expressed by the optimal frequency ratio and the optimal damping ratio via Eq. (67),
the result is

a ¼ ð1þ gÞ2
aZ

1þ aZk
; g ¼

gZ
1� gZk

(77)



ARTICLE IN PRESS
S. Krenk, J. Høgsberg / Journal of Sound and Vibration 323 (2009) 530–554 547
In the present case it follows from Eq. (38) that a ¼ g, and the inverse relations for the gain factors are then
found as

aZ ¼
g

ð1þ gÞ2 � kg
, (78a)

gZ ¼
g

1þ kg
(78b)

These relations together with Eqs. (66) and (67) enable determination of the damping parameters in terms of
the single gain parameter g for an MDOF structure with an actuator controlled by filtered acceleration
feedback.

5.5. Example: cable with collocated accelerometer and actuator

Fig. 11 shows a taut stay cable of length l with a transverse actuator acting on the cable at the distance
ld ¼ 0:02l from the bottom support. It is known that an optimally tuned linear viscous damper leads to a
modal damping ratio of zmax

1 ¼ 1
2

ld=l ¼ 0:01 [23]. This serves as a reference value for the efficiency of the
present optimally calibrated resonance damper.

The cable is discretized into 50 elements with the actuator attached to node 1. Linear interpolation with
lumped mass is used leading to the mass and stiffness matrices

M ¼ mcab

1

1

. .
.

1

2
66664

3
77775; K ¼ kcab

2 �1

�1 2

. .
.
�1

�1 2

2
66664

3
77775

The concentrated nodal masses are taken as mcab ¼ 1 and the element stiffness kcab is chosen so that
the natural frequency of the first mode is o1 ¼ 2p ¼ 6:283, corresponding to a vibration period of 1.00 for
mode 1. Acceleration feedback is assumed via an ideal accelerometer attached to the cable at the location of
the actuator. The connectivity vector of the collocated system is

wT ¼ ½1; 0; 0; . . . ; 0�

This gives a correction factor for background modes of k ¼ 23:52, indicating a significantly larger influence of
higher modes for the present cable example than for the cantilever beam used in the previous example for
displacement feedback control.

The design procedure for the acceleration feedback control is similar to that for displacement feedback. The
desired damping ratio is split equally between the two modes generated by the resonant actuator. Thus, the
SDOF damping ratio is zc ¼ 2zdes1 , and upon inversion of Eq. (39) the parameter g is determined by

g ¼
2z2c

1� 2z2c
(79)
1

2

49

Fig. 11. Taut stay cable with damper attached at node 1.
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The results of the design procedure are summarized in Table 2 for desired damping ratios zdes1 ¼ 0:01, 0.02,
0.04 and 0.06. The split of the damping ratio on the two resulting vibration modes is nearly equal, although
not quite as good as for the cantilever beam with displacement feedback. This is due to the greater influence of
the background modes, that is accounted for via a quasi-static approximation. Compared to the optimal
viscous damping with zmax

¼ 0:01 the present resonant control performs very well, enabling a modal damping
ratios of around z� ’ 0:06, corresponding to six times that of passive viscous damping. The larger influence of
the background modes in the present case also leads to further shortcomings of a design without including
their effect, i.e. a design based on k ¼ 0.

Fig. 12 shows the root locus diagram of the cable with an optimally controlled actuator. It is seen that the
solid curves follow the 45� trajectory almost up to the stability limit, determined as the value of g for which the
expression (78a) for aZ becomes unbounded. With the present value of k ¼ 23:52 this corresponds to a stability
limit of g ¼ 0:046. The four levels of control listed in Table 2 are indicated by dots. The dashed line connects
the origin and the point on the right branch for g ¼ 0:0297. The deviation from the equal split condition is
illustrated in terms of the corresponding dot on the left branch. Although the deviation is visible it is perfectly
acceptable for design purposes. The similar results corresponding to a design without accounting for the effect
of the undamped modes, i.e. with k ¼ 0, are shown by the dashed curves and cross markers. It is clearly
illustrated that a design without account of undamped modes is insufficient and leads to low and unequal
modal damping not exceeding that of an optimal passive viscous damper.

A frequency response analysis is conducted for a uniformly distributed harmonic load with unit nodal
intensity

FT ¼ ½1; 1; . . . ; 1� expðiotÞ

The dynamic amplification of the cable midspan response is shown in Fig. 13a and the magnitude of the
frequency response of the actuator force is shown in Fig. 13b. The flat plateau is again obtained in the mid
span response and the control force has a positive inclination similar to that for the SDOF case in Fig. 6. It
Table 2

Mode 1 damping ratios for cable ðk ¼ 23:52Þ.

zdes1
zc g oc=o1 gZ aZ oZ=o1 zZ z�1 z�1 jk¼0

0.01 0.02 0.0008 0.9992 0.0008 0.0008 1.0087 0.0206 0.0101 0.0136

0.0098 0.0059

0.02 0.04 0.0032 0.9968 0.0030 0.0034 1.0364 0.0447 0.0205 0.0285

0.0194 0.0072

0.04 0.08 0.0130 0.9872 0.0099 0.0180 1.1776 0.1245 0.0418 0.0470

0.0376 0.0067

0.06 0.12 0.0297 0.9712 0.0175 0.0818 1.6607 0.3483 0.0647 0.0502

0.0549 0.0055

Fig. 12. Root locus diagram. Calibration with (——) and without (– – –) background correction. Markers represent the four cases in

Table 2.
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Fig. 13. (a) Dynamic amplification at cable mid. (b) Magnitude of control force. g ¼ 0:0008 (——), 0.0032 (– – –), 0.0130 ð2 � 2Þ and

0.0297 ð2	 2Þ.
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should be noted that the scales on the axes have been changed by a factor of 2 due to the lower level of
damping in the present example.

6. Conclusions

The general principle of resonant control consists in the introduction of a resonant circuit or device,
connected to the structure via feedback of a sensor and an actuator. The present paper describes a design
philosophy and its practical implementation. The coupling of the control resonator to the structure leads to a
split of the original resonant mode into two modes. The first design condition introduced here is that these two
modes should have identical modal damping ratio. This is attained by a root locus analysis, that gives a
particular mathematical format and determines the resonator’s natural frequency in terms of a feedback
parameter. The next concern regards the relative frequencies of the two resonant peaks. If the resonant
frequencies are close, the two modes interfere, eventually forming a single broadened peak if too close. Thus,
optimal separation of the two resonance peaks forms the second design consideration. This consideration is
implemented via a requirement of equal amplification at two special points, at which the combined
amplification is independent of damping. Finally, the damping coefficient of the resonant controller is selected
to provide a flat plateau of the frequency response curve. The procedure is described in detail for filtered
displacement feedback and for filtered acceleration feedback in Section 4. There are only modest differences
between the formulae for the optimal parameters in the two cases, and both forms lead to similar response
characteristics.

The extension to the case of multi-degree-of-freedom systems is also presented. The important point is that
in these systems the actuator will typically activate response from other modes than the one selected for
control. These other modes—the background modes—contribute to the response picked up by the sensor. It is
important to counteract this effect in the calibration of the resonant controller. A simple explicit procedure, in
which the background modes are included via a quasi-static approximation is described. This procedure leads
to an explicit modification of the formulae for the optimal controller parameters, and thus the complete
calibration retains its non-iterative form. The importance of including the effect of background modes is
illustrated by examples, where the method which includes the effect of background modes retains near-ideal
properties of the resulting response. In contrast, straightforward application of the design formulae for the
single-degree-of-freedom system to flexible structures leads to severe deterioration of the efficiency of the
resonant controller.
Appendix A. Root locus analysis

This appendix presents the topology and a parameter representation of the root locus diagram under the
condition of equal modal damping. The inverse root property of the characteristic equation (9) leads to a fairly
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simple complete solution for all parameter values. It follows from the equivalent form (8) that the
characteristic equation is a quadratic equation in the variable

ix ¼
1

2

o
o0
�

o0

o

� �
(A.1)

with solution

x=c ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

q
(A.2)

The frequency ratio o=o0 then follows from the definition of x in Eq. (A.1) as

o=o0 ¼ ix�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
(A.3)

The four roots oj are generated by the four sign combinations in Eqs. (A.2) and (A.3).
The parameter b appears as a factor to the imaginary coefficients in the characteristic equation and is

associated with the damping of the coupled system. It is therefore natural to start the root locus analysis with
considering the roots for b ¼ 0. For this parameter value (A.2) gives x ¼ �ic. Substitution of these values into
Eq. (A.3) then demonstrates that there are two different cases, depending on whether the parameter c is
smaller or greater than unity. It appears that in the cases of interest in the present context cp1, and this will be
assumed in the following. Under this condition the roots o1 and o2 are located on the positive real axis and
found from Eq. (A.3) with x ¼ �ic as

o1;2=o0jb¼0 ¼ �cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p
(A.4)

Thus, the condition cp1 corresponds to the condition of real-valued natural frequencies for b ¼ 0. In this case
the parameter c defines the difference between the frequencies o1 and o2 for b ¼ 0,

o2 � o1 ¼ 2co0 (A.5)

This relation is illustrated in Fig. 2, where the difference between the roots on the real axis is 2c ¼ 0:8. The
markers correspond to b ¼ 0; 0:05; 0:10; 0:15; . . . .

When the parameter b is increased from zero the roots o1;o2 and o3;o4 generate curves that meet at two
bifurcation points for b ¼ 1, corresponding to x ¼ c and

ob=o0 ¼ ic�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

(A.6)

When b increases beyond the value b ¼ 1 the roots leave the bifurcation points following the circle joj ¼ o0 as
illustrated in Fig. 2. The two upper branches meet at a new bifurcation point o ¼ io0 at the imaginary axis. It
follows directly from the root locus equation (9) that this bifurcation point is reached at

b ¼ 1
2
ðcþ c�1Þ (A.7)

It is noted that the first pair of bifurcation points are located on the circle joj ¼ o0, irrespective of the value of
the parameter c.

Appendix B. Optimal amplification characteristics

In this appendix two optimality conditions are obtained from the frequency curve of the amplification
of the structural response. The first condition follows from the observation that the frequency curve of the
amplification has two fix points at oA and oB, where the amplification is independent of the damping
parameter zc of the controller as illustrated in Fig. 4. A relation between the remaining parameters is obtained
by imposing the condition of equal amplification at oA and oB. This generalizes the procedure introduced in
Ref. [1] for the special case of the tuned mass absorber. The special fix point property follows from the
observation that the frequency response function is of the form

xk

F
¼

Aþ 2izcB

C þ 2izcD
(B.1)
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where A, B, C, D depend on the frequency, but are independent of the parameter zc. The format (B.1) implies
that in order for the response magnitude to be independent of the parameter zc, the coefficient functions must
satisfy the equation

AB ¼ �BD (B.2)

It turns out that only the condition with the minus sign leads to an equation for the fix point frequencies oA

and oB. In the present formulation this equation determines the parameter a in terms of g.
The second condition follows from the requirement that the amplification at the reference frequency o0,

located between the fix point frequencies oA and oB is equal to the amplification at these frequencies as
illustrated in Fig. 4,

xk

F

����
����
o0

¼
xk

F

����
����
A;B

(B.3)

This generalizes the procedure introduced for determining the optimal damping of the tuned mass absorber in
Ref. [17] and provides an equation of the parameter zc.

B.1. Filtered displacement feedback

In the case of displacement feedback the displacement frequency response function of x follows from
Eqs. (4) and (20) as

xk

F
¼

o2
0½o

2
0 � ð1þ gÞo2 þ 2i

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

zco0o�

o4 � 2þ
aþ g2

1þ g

� �
o2

0o
2 þ o4

0 þ
2izcffiffiffiffiffiffiffiffiffiffiffi
1þ g
p o0oðo2

0 � o2Þ

(B.4)

where k ¼ o2
s m is the structural stiffness. The first step is to form Eq. (B.2) with the minus sign. In the present

case the response function (B.4) leads to the equation

2ð1þ gÞo4 � ð4þ aþ 3gþ g2Þo2
0o

2 þ ð2þ gÞo2
0 ¼ 0 (B.5)

This quadratic equation for o2 implies that the sum of the roots is given by the coefficients to the middle term
divided by the coefficient to the first term

o2
A þ o2

B ¼
4þ aþ 3gþ g2

2ð1þ gÞ
o2

0 (B.6)

At the frequencies oA and oB the amplification is independent of zc, and it can therefore be evaluated from the
limit zc !1 as the ratio of the coefficients B and D. When accounting for a reversal of phase angle this
relation is

o2
0

o2
0 � o2

A

¼
o2

0

o2
B � o2

0

(B.7)

from which

o2
A þ o2

B ¼ 2o2
0 (B.8)

The fix point frequencies are determined by equating the right sides of the two Eqs. (B.6) and (B.8), leading to
the relation

a ¼ gð1� gÞ (B.9)

This relation enables elimination of the gain parameter a.
The fix point frequencies are needed for evaluation of the amplification. They follow from Eq. (B.5) as

o2
A;B

o2
0

¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

2ð1þ gÞ

r
(B.10)
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At the frequencies oA and oB the amplification is independent of the parameter zc, and it can therefore be
determined directly from the ratio of the imaginary parts of the response function,

xk

F

����
����
A;B

¼ ð1þ gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ gÞ

g

s
(B.11)

At the reference frequency o0 the response is found to be

xk

F

����
o0

¼ ð1þ gÞ 1� 2izc

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
g

s" #
(B.12)

The control parameter zc is determined by equating the amplification factor at the three frequencies, whereby

z2c ¼
g
4

2þ g
1þ g

(B.13)

This completes the determination of optimal parameters a and zc in terms of the gain parameter g for the case
of filtered displacement feedback.

When this design procedure for filtered displacement feedback is compared to the generic root locus format
in Section 3 it is found that it corresponds to

b ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
2þ g
1þ g

s
’

ffiffiffi
2
p

2
1�

1

4
gþ � � �

� �
; c ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffi
g

1þ g

r
(B.14)

Thus, for typical values of g in the order of 0.01–0.05 it is seen that b ’ 1
2

ffiffiffi
2
p

, as discussed at the end of
Section 3. Furthermore, it is seen that co1

2
, and thus the complex roots always correspond to inverse points

located on the small circle in Fig. 2.

B.2. Filtered acceleration feedback

In the case of acceleration feedback the structural frequency response function follows from Eqs. (4) and
(34) as

xk

F
¼

o2
0½o

2
0 � ð1þ gÞo2 þ 2i

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

zco0o�

o4 � 2þ
aþ g2

1þ g

� �
o2

0o2 þ o4
0 þ 2i

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

zco0oðo2
0 � o2Þ

(B.15)

The procedure for determination of the parameters a and zc closely follows that of the corresponding
displacement feedback problem. In the present case condition (B.2) takes the form

ð2þ gÞo4 � 4þ gþ
aþ g2

1þ g

� �
o2

0o
2 þ 2o4

0 ¼ 0 (B.16)

This quadratic equation for o2 implies that the sum of the roots is given by the coefficients to the middle term
divided by the coefficient of the first term,

o2
A þ o2

B ¼

4þ gþ
aþ g2

1þ g
2þ g

o2
0 (B.17)

The amplification at oA and oB is assumed to be independent of the parameter zc and can therefore be
evaluated from ratio of the coefficients B and D. As in the previous case this leads to Eq. (B.8). Equality of the
right sides of Eqs. (B.17) and (B.8) then gives

a ¼ g (B.18)

Thus, in this case equal amplification at the two fix points leads to equality of the two gain factors.
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When the amplification factors are taken to be equal in accordance with Eq. (B.18) the expressions simplify
and the fix point frequencies follow from Eq. (B.16) as

o2
A;B

o2
0

¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
g

2þ g

r
(B.19)

At the frequencies oA and oB the amplification is independent of the parameter zc, and the amplification can
therefore be determined directly from the coefficient ratio B=D,

xk

F

����
����
A;B

¼

ffiffiffiffiffiffiffiffiffiffiffi
2þ g
g

s
(B.20)

At the reference frequency o0 the response follows from Eq. (B.15) as

xk

F

����
o0

¼ 1� 2izc

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
g

s
(B.21)

By setting the corresponding response amplitude equal to Eq. (B.20), an equation is obtained for zc with the
solution

z2c ¼
1

2

g
1þ g

(B.22)

This completes the determination of optimal parameters a and zc in terms of the gain parameter g for the case
of filtered acceleration feedback.

In this case the corresponding generic parameters from the root locus analysis in Section 3 correspond to

b ¼ 1
2

ffiffiffi
2
p

; c ¼ 1
2

ffiffiffi
g
p

(B.23)

This matches the design parameter combination discussed in Section 3 exactly.
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